Building a Stakeholder-Supported Tool for Oyster Siting in the Eastern Bay

Gerard (JJ) Smith, PhD Spatial modeler/Quantitative ecologist Consolidated Safety Services, Inc.

My Background

- CSS, inc. contracted to work for NOAA's NCCOS Oxford lab
- Conducted biology research in a variety of fields
- Excited to work with and learn more about oysters
- I'm from the government and I'm here to help...

Project Goals and Outline

- Develop a tool to inform site selection for oyster restoration and aquaculture in the Eastern Bay
- Stakeholder-Supported Restoration Suitability Model (SSRSM) based on Howie et al. (2024)
- Identify ecologically ideal locations for oysters
- Minimize conflict with current competing waterway uses
- Solicit input from a broad group of stakeholders to include their preferences in site selection

The Bones of the Tool – Habitat Suitability Model

- Spatially-explicit biophysical data
- Which parameters?
- Following ORP's 2021 report

Variable	1	2	3	4	5	6	7	8	9	10	11
Salinity, average	х	х	х	Х	Х	Х	Х	Х	х	Х	Х
Bottom	х	Х		х			х	х	х	х	х
type/Substrate										U	n
Water depth	Х	х			Х	Х			х	a	×
Water temperature	х	Х	Х		Х	Х				ווור	5
Dissolved oxygen		Х	Х		Х	Х				~	
Turbidity		Х	х		Х	Х				ק	2 Z
Disease		х	х	х			х				+
Predator intensity			х	х			х				
Food availability		Х	Х		Х						
Freshet frequency	х			х			х				
Oyster abundance				х			х				
Fouling organisms			х								
рН			х								
Water flow			х								
Sedimentary environment									х		
Salinity during spawning season										х	
Salinity, annual minimum	Adapted from Theuerkauf and Lipcius 2016										

Scoring Raw Data Layer Using Curve

Habitat Suitability Model Calculation

- Individual variables and HSI are scaled from 0 to 1
- Geometric mean of variables
- HSI ranges from 0 to 1
- 0's for any variable make the overall HSI = 0

$$HSI = \sqrt[n]{V_1 * V_2 * V_3 * \dots V_n}$$

Water Quality Data Layers – VIMS ChesROMS

- Water quality data from VIMS-ChesROMS
- Daily values for 2014 2023
- Average grid size 600 m x 600 m
- Minimum monthly salinity
- Minimum monthly dissolved oxygen
- Mean phytoplankton concentration

Example chesROMS Dissolved Oxygen Data

Bottom Sediment Type - CMECS

Coastal and Marine Ecological Classification Standard

NOAA/NOS Bathymetric Digital Elevation Model

All models are wrong, but some are useful. ~ George E. P. Box

Competing Uses Exclusionary Layer

- Represent areas of human activity (mostly)
- Many include buffers to be conservative
- Scored like other layers
- Exclusionary

What are the Competing Uses?

• To ArcGIS!

Stakeholder Survey and Participatory Mapping

Eastern Bay Survey

Help us understand where to site (and not site) oyster aquaculture

Begin

(6) Settings

Survey Questions and Process

- How often do you visit the Eastern Bay and its tributaries?
- How do you primarily use the Eastern Bay and its tributaries?
- Is your income directly dependent on the Eastern Bay and its tributaries?
- If you work in the study area, for which sector do you work?
- Do you, in principle, support oyster restoration and aquaculture in Eastern Bay and its tributaries?

Mapping Exercise Demo

Analysis of mapping data

- How we incorporate this data will depend on the nature of the data
- Density layer of where siting is supported
- Jumping off point for areas that are otherwise great

Next Steps

- Improvements to HSI
- Including more competing uses
- Getting survey out and processing results
- Ecosystem services

Acknowledgements and Contact Information

John Jacobs George Edmonds Ben Ford Amy Freitag Matt Houser Chris Judy Laurinda Serafin A.K. Leight Klaus Huebert Ward Slacum Howard Townsend Olivia Caretti Jason Spires **Pierre St-Laurent** Varis Ransi **Rebecca** Thur

Please send all thoughts about competing uses, model parameters, survey questions, general complaints, specific grievances, and constructive criticisms to <u>Gerard.smith@noaa.gov</u>